
ARTICLE IN PRESS
0889-9746/$ - se

doi:10.1016/j.jfl

�Tel.: +55 51
E-mail addr
Journal of Fluids and Structures 20 (2005) 189–195

www.elsevier.com/locate/jfs
Aeroelastic analysis of panels in compressible flows

A.L. De Bortoli�

UFRGS-PPGMAp-Bento Gonc-alves 9500, P.O. Box 5080, UFRGS-PPGEQ-Rua Luiz Englert s/n, 90040-040, Porto Alegre-RS, Brazil

Received 26 April 2002; accepted 24 October 2004
Abstract

This work develops a method to solve fluid–structure problems based on the arbitrary Lagrangian–Eulerian, ALE,

formulation using the central finite difference, explicit Runge–Kutta time-stepping scheme. This model builds on earlier

ones that involve ALE with finite elements instead of finite differences, in order to obtain higher-order space and time

approximations which are necessary for some aeronautical applications. Numerical tests are carried out for an airfoil

and a panel using the Euler equations with Mach numbers ranging from 0.2 to 2.0 and the results are shown to compare

favourably with available data found in the literature.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Due to weight restrictions in modern aircraft their structure needs to be more flexible and, consequently,

aeroelasticity plays an important role. Aeroelasticity is the study of the mutual interaction that takes place between the

inertial, elastic and aerodynamical forces. There are many important aeroelastic phenomena, such as flutter and

divergence (Bisplinghoff et al., 1957; Försching, 1974).

The aeroelasticity methods can be classified as weakly and strongly coupled methods (Guruswamy, 1990; Marshall,

1996). A more complete mathematical modelling of the problem results in a strongly coupled scheme.

This work develops a numerical method for the solution of aeroelastic problems based on the ALE formulation. The

central finite difference explicit Runge–Kutta time-stepping scheme is employed to solve for Mach numbers ranging

from 0.2 to 2.0 about a panel. It is convenient to use the momentum equations to obtain the velocity components, the

energy equation for the total energy, the mass conservation for the density and the state relation for the pressure.

Here a panel is considered to be a surface of moderate curvature submitted to flow over one of its faces and free on

the other. It is an important dynamical model because experiments suggest that when it is clamped at one end and free

at the other it behaves essentially as a dynamical airfoil. It can be stable or unstable, depending on the incident flow

velocity. If it is simply supported or clamped at both ends; it can lose stability by divergence at subsonic flows or flutter

at supersonic flows (Garrad and Carpenter, 1982). However, a panel with a clamped end and free elsewhere loses

stability by flutter at subsonic flows and by divergence at supersonic flows.

Results obtained for Euler equations are compared to potential equation solutions based on the conformal mapping

method (Blazek, 1994) and with an aeroelastic model.
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2. Governing equations

The solution is advanced in time obtaining the structural displacements with the fluid pressures at same time-step.

The Euler equations are written for unsteady compressible bidimensional inviscid flows in differential form (Kroll and

Rossow, 1989) based on ALE (Belytschko and Hughes, 1986; Souli et al., 2000) formulation as

mass equation:

@ðrJÞ

@t
¼ J

@

@xj

½rðwj � vjÞ�; (1)

momentum equation:

@ðrviJÞ

@t
¼ J

@

@xj

½rviðwj � vjÞ� þ J rbi �
@p

@xi

� �
;

ð2Þ

energy equation:

@ðrEJÞ

@t
¼ J

@

@xj

½rEðwj � vjÞ� þ J rvjbj �
@ðpvjÞ

@xj

� �
;

ð3Þ

where wj is the reference frame velocity, vj the fluid velocity, r the fluid density, p the pressure, E the total energy, bi the

body force and Jðx0; tÞ ¼ @V=@V0 provides the mathematical link between the current volume dV ; function of the
mixed variables, and the associated volume dV0; function of the material coordinates.
In order to close this system of equations the state relation for a perfect gas is employed

p ¼ rRT ¼ ðg� 1Þr E �
u2 þ v2

2

� �
; (4)

where R is the gas constant, g the specific heat ratio and T the temperature. Note that, taking the reference velocity wj

equal to zero, the Eulerian formulation is obtained; while taking wj ¼ vj ; the purely Lagrangian formulation is reached.
This set of equations can be written as follows:

@W

@t
¼ J

@F̄

@xj

þ S; (5)

where W is the vector of convective variables, F̄ the convective flux tensor and S the pressure and other source terms.
3. Solution procedure

In the computational domain the cell vertices are identified by their indices ði; jÞ: As Eq. (5) is valid for an arbitrary
cell, it can be written as (Kroll and Rossow, 1989)

@Wi;j

@t
¼ �Qi;j : (6)

When one solves the Euler equations using a central averaging nondissipative scheme, it is advised to introduce some

artificial dissipation (Kroll and Rossow, 1989). The optimum amount of artificial viscosity is mainly determined not by

stability considerations, but by the smoothing properties of relaxation. The reduction of nonsmooth error components

is basically a local task whose process efficiency can be measured by local mode analysis. The dissipation vector Di;j is

introduced as follows:

@Wi;j

@t
¼ �½Qi;j �Di;j �: (7)

The dissipation operator is a blend of second- and fourth-order differences and is defined, according to Jameson et al.

(1981) as

Di;j ¼ diþ1
2;j
� di�1

2;j
þ di;jþ1

2
� di;j�1

2
; (8)
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where the dissipation coefficient is given by

diþ1
2;j
¼ aiþ1

2;j
½�ð2Þ

iþ1
2;j
dxWi;j � �ð4Þ

iþ1
2;j
dxxxWi�1;j �:

ð9Þ

The dissipation flux diþ1
2;j
is of third order in smooth regions; while in regions of high-pressure variations, the

dissipation is of first-order and the scheme behaves as a first-order upwind scheme. The difference operators of first and

third order are dx and dxxx; respectively: dxWi;j ¼Wiþ1;j �Wi;j ; dxxxWi;j ¼Wiþ2;j � 3Wiþ1;j þ 3Wi;j �Wi�1;j :
The scaling factor a is written for the i direction according to Blazek (1994) as

aiþ1
2;j
¼

li�

i;j þ li�

iþ1;j

2
; (10)

where the eigenvalues, l; are scaled in each coordinate direction as

li�

i;j ¼ li
i;jf

i
i;j ; (11)

considering the cell aspect ratio

fi
i;j ¼ 1þ

lj
i;j

li
i;j

 !c

; (12)

where c ¼ 2
3
is a parameter used to scale the spectral radii.

The coefficients adapted to the local pressure gradients �ð2Þ and �ð4Þ; which we needed to obtain the dissipation
coefficient, are written as follows:

�ð2Þ
iþ1

2;j
¼ kð2Þnmax; (13)

�ð4Þ
iþ1

2;j
¼ maxð0; kð4Þ

� �ð2Þ
iþ1

2;j
Þ; (14)

where the divided second-order pressure sensor is given by

ni;j ¼
piþ1;j � 2pi;j þ pi�1;j

piþ1;j þ 2pi;j þ pi�1;j

�����
����� (15)

with nmax ¼ ðniþ2;j ; niþ1;j ; ni;j ; ni�1;jÞ and kð2Þ and kð4Þ are 0:5pkð2Þp0:6; 1
128

pkð4Þp 1
48
:

In order to integrate equations in time the Runge–Kutta method is chosen, characterized by its low operation count;

more than two stages are employed to extend its stability region. The multistage scheme, requiring few computational

storage, is written as

W
ð0Þ
i;j ¼Wn

i;j ; (16)

Wr
i;j ¼W

ð0Þ
i;j � arDtR

ðr�1Þ
i;j ; (17)

Wnþ1
i;j ¼W

ðrÞ
i;j ; (18)

where W ¼ ðrJ; ruJ; rvJ; rEJÞT and

Rr
i;j ¼ Qr

i;j �D
ðrÞ
i;j (19)

with r ¼ 0; 1; 2; . . . ;m ¼ 5 and the following second-order coefficients: a1 ¼ 1
4
; a2 ¼ 1

6
; a3 ¼ 3

8
; a4 ¼ 1

2
; a5 ¼ 1:
4. The fluid–structure coupling and code calibration

Since the aeroelastic deformation resulting from the flexibility of an aerodynamic body can change the flow

conditions considerably, it is convenient to use the ALE approach. The conditions prescribed at each point of the

interface between an inviscid fluid and a deforming structure are (Belytschko and Hughes, 1986):
(i)
 the coincidence of grid velocity wj of the fluid with the solid velocity;
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Fig. 1. Aeroelastic panel model.
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(ii)
 the coincidence of normal velocity of the fluid with that of the solid;
(iii)
 the tangential velocity of the fluid is unconstrained.
To compare to the solutions to be obtained, a panel model is given in Fig. 1. The simplified equation for this problem

is

@4s

@x4
þ
rsh

D

@2s

@t2
þ

Dp

D
¼ 0; (20)

where

Dp ¼ �r
@f
@t

þ U
@f
@x

� �
y¼0

: (21)

In Eqs. (20) and (21) Dp is the local fluid pressure difference, U the mean fluid velocity, D ¼ Eh3=½12ð1� n2Þ� the flexural
rigidity, h the panel thickness, r the fluid density, rs the material density, and f the potential velocity perturbation

satisfying the equation

@2f
@x2

þ
@2f
@y2

¼ 0; (22)

with the boundary conditions

@f
@x

� �
y¼0

¼
@s

@t
þ U

@s

@x
for 0oxoL;

@f
@x

� �
y¼0

¼ 0 elsewhere:

The analytical solution results in the following critical parameter (Garrad and Carpenter, 1982)

l2 ¼
rU2L3

D
; (23)

with l ¼ 181 for a clamped panel and l ¼ 41.8 for a simply supported panel (Garrad and Carpenter, 1982). In this

way, a clamped steel panel of 1m length has a critical thickness of about 1.54 mm at Mach number 0.3; almost

incompressible flow.
5. Numerical results

One way of proving the validity of the numerical Euler solutions is to compare them with potential solutions or

experimental data. This is done before analysing the coupling of fluid and structure.

Numerical results for NACA 0012 were obtained using a C-grid topology of 256	64 cells. The position of the outer

boundary is chosen around 20 chord lengths away from the airfoil and the far field boundary condition is modified due

to a vortex (Usab and Murman, 1983; Blazek, 1994).

The conditions imposed at the outer boundary should assure that the outgoing waves are not reflected back into the

flow field. Inappropriate conditions can substantially degrade the accuracy of the computed solution and slow down the
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convergence. The far-field potential is strictly valid in subsonic flows; however, the correction of the free-stream

conditions is applied in transonic flows and has been proved helpful in this regime also.

Fig. 2 shows the pressure contours and coefficient computed for Mach ¼ 0.3 and a ¼ 5
; Fig. 3 the pressure contours
for Mach ¼ 0.754 and a ¼ 2
 and Mach ¼ 0.8 and a ¼ 1:25
 (De Bortoli, 1994). Numerical solutions for Euler
equations are in good agreement with experimental (Kroll and Rossow, 1989) or numerical/theoretical data (Blazek,

1994). The pressure coefficient differs by less than 5% compared to the conformal mapping solution (Blazek, 1994),

which is expected for Mach ¼ 0.2; such difference decreases for small Mach numbers (De Bortoli, 1994). The code

showed itself to be efficient also to obtain shocks over aerodynamical surfaces.

In the following, numerical solutions for a panel subjected to subsonic, transonic and supersonic flows, Mach ¼ 0.3,

0.8 and 2.0, are presented. A panel is chosen because experiments suggest that when it is clamped or simply supported at

its ends it behaves essentially as a dynamical airfoil (Garrad and Carpenter, 1982). The grid contains 60	24 cells; 20

divisions over the curved surface.

Fig. 4 shows the pressure coefficient lines for Mach ¼ 0.3, 0.8 and 2.0, for a panel based on the NACA 0012 airfoil,

whose y coordinate was divided by 3, resulting in a 2% surface curvature. The panel has unit length, going from 2 to 3

in the coordinate system. The pressure coefficient lines are in agreement with the expected solution; besides which

changing the panel surface to the geometry of an airfoil or a cylinder gives the corresponding standard solutions.

The aeroelastic solutions obtained using the Euler equations are plotted in Fig. 5; the numbers 1–8 indicate the panel

position after the corresponding number of time units of 0.1 s. The panel thickness corresponds to 2 times its critical

value; therefore displacements are small.

Observe that the panel vibrates reaching the first structural mode for subsonic flow and the second mode for

supersonic flow. This suggests that the system tends to lose stability by divergence at subsonic flows and by flutter at

supersonic flows, when its thickness is less than the critical value.
Fig. 2. Pressure contours (a) and coefficient (b) for NACA 0012, Mach ¼ 0.2 and a ¼ 5
:

Fig. 3. Pressure contours for NACA 0012: (a) Mach ¼ 0.754 and a ¼ 2
; (b) Mach ¼ 0.8 and a ¼ 1:25
:
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Fig. 4. Pressure contours for panel for Mach: (a) 0.3, (b) 0.8 and (c) 2.0.

Fig. 5. Displacements s(m) for panel after 1; 2; :::; 8 time units for Mach: (a) 0.3, (b) 0.8 and (c) 2.0.

A.L. De Bortoli / Journal of Fluids and Structures 20 (2005) 189–195194



ARTICLE IN PRESS
A.L. De Bortoli / Journal of Fluids and Structures 20 (2005) 189–195 195
6. Conclusions

A method based on ALE in finite difference for modeling panel fluid–structure interactions was developed. It can be

employed for high-order space and time approximations for solving even more complex fluid–structure interaction

situations. Therefore, the general approach can be extended to big displacements.

The code has been calibrated when computing subsonic and transonic flows around airfoils (De Bortoli, 2002); the

structural deflections were compared with analytical values. Since explicit time-stepping schemes are used, the solution

algorithm is obviously easily vectorizable and parallelizable.

Results indicate that the amplitudes of deflections grow when increasing the flow velocity. Besides, a rigid panel, with

big elasticity modulus, can be employed to verify implementation errors, when they exist; such a case showed very small

amplitudes.

The results indicate the tendency of a clamped panel to lose stability by divergence in the subsonic regime and by

flutter in the supersonic case. The code is being extended to solve aeroelastic problems over more complex flexible

geometries using simpler methods.
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